Sampling and Statistical Physics via Symmetry

نویسندگان

چکیده

We formulate both Markov chain Monte Carlo (MCMC) sampling algorithms and basic statistical physics in terms of elementary symmetries. This perspective on yields derivations well-known MCMC a new parallel algorithm that appears to converge more quickly than current state the art methods. The symmetry also parsimonious framework for practical approach constructing meaningful notions effective temperature energy directly from time series data. apply these latter ideas Anosov systems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Search Trees via Statistical Physics

Satya N. Majumdar , David S. Dean 2 and P.L. Krapivsky 3 Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud. Bât. 100. 91405 Orsay Cedex. France Laboratoire de Physique Theorique (UMR C5152 du CNRS), Université Paul Sabatier, 31062 Toulouse Cedex. France 3 Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA (Febr...

متن کامل

Monitoring Large Systems Via Statistical Sampling

As the trend in parallel systems scales toward petaflop performance tapped by advances in circuit density and by an increasingly available computational Grid, the development of efficient mechanisms for monitoring large systems becomes imperative. When computational components are coupled via dynamically shifting connections with various remote resources, the number of potential factors affecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer proceedings in mathematics & statistics

سال: 2021

ISSN: ['2194-1009', '2194-1017']

DOI: https://doi.org/10.1007/978-3-030-77957-3_20